ANNUAL WATER OUALITY REPORTING YEAR 2019

Presented By Town of Newburgh Consolidated Water District

PWS ID#: NY3503578

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated

> ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Water Conservation Tips

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Violation Information

As part of routine lead and copper sampling, a sample taken within our water system received a result of 1300ug/L. This result is over the set action level (AL) of 15ug/L. Consequently, several repeat samples were taken from various other points in the residence. The repeated samples returned results between 1.0 and 3.1ug/L. The reason for the initial high sample result is unknown.

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Where Does My Water Come From?

The Town utilizes two sources of water: Chadwick Lake Reservoir and New York City DEP's Delaware Aqueduct. The Chadwick Lake Filter Plant has the capacity to treat 3.2 million gallons of water per day. The Delaware Aqueduct supply is taken from New York City's Delaware Watershed, which comprises four large reservoirs in the Catskill region. The Delaware Aqueduct Facility has the capacity to supply 6 million gallons of water per day. A new filtration plant for the Delaware source went on line in November of 2013.

Important Health Information

Some people may be more vulnerable to disease-causing microorganisms or pathogens in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium*, Giardia, and other microbial pathogens are available from the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791 or at www.epa.gov/safewater/lead.

Community Participation

If you would like to learn more about your drinking water, please attend any of our regularly scheduled Town Board meetings. A schedule of meetings is available from the Town Clerk's Office, 1496 Route 300, Newburgh, NY (845) 564-4554.

For more information about this report, contact John P. Egitto, Operations Engineer, at (845) 564-2180 or the Orange County Health Department at (845) 291-2331. You may also contact the New York State Department of Health at (800) 458-1158. The U.S. EPA drinking water Web site (www.epa. gov/safewater) also provides valuable information.

Source Water Assessment

The NYS DOH has evaluated the susceptibility of the Town of Newburgh Consolidated Water District (TONCWD) to contamination under the Source Water Assessment Program (SWAP). Their findings are summarized in the paragraphs below. It is important to stress that these assessments were created using available information and only estimate the potential for source water contamination. Elevated susceptibility ratings do not mean that source water contamination has or will occur for this Water District. The TONCWD provides treatment and regular monitoring to ensure that the water delivered to consumers meets all applicable standards

A copy of the assessment, including a map of the assessment area, can be obtained by contacting us, as noted in this report.

Chadwick Lake Reservoir Assessment Summary

This assessment found an elevated susceptibility to contamination for this source of drinking water. Land cover and its associated activities within the assessment area do not increase the potential for contamination. Non-sanitary wastewater discharges may also contribute to contamination. There are no noteworthy contamination threats associated with other discrete contaminant sources. Additional sources of potential contamination include a roadway.

Delaware Aqueduct Source Water Assessment Summary

The TONCWD also obtains water from the New York City water supply system. Water comes from the Delaware watershed west of the Hudson River. The SWAP methodologies applied to the rest of the state were not applied to the Delaware Aqueduct Source. Additional information on the water quality and protection efforts in these New York City watersheds can be found at DEP's Web site at WWW.nyc.gov/dep/watershed.

Facts and Figures

Our water system serves 22,800 customers through 6,600 service connections. The total amount of water produced in 2019 was 1.118 billion gallons. The daily average of water treated and pumped into the distribution system was 3.06 million gallons per day. The 2019 billing rate was \$18.00 for the first 7500 gallons used, \$4.55/1,000 gals. for the next 10,000 gals., \$5.25/1,000 gals. for the next 82,500 gals. used, and \$6.25/1,000 gals. thereafter. The minimum quarterly bill was \$18.00.

Fluoridation of Our Water

Our system is one of the many drinking water systems in New York State that provides drinking water with a controlled, low level of fluoride for consumer dental health protection.

-//

According to the United States Centers for Disease Control, fluoride is very effective in preventing cavities when present in drinking water at an optimal target residual of 0.7ppm. To ensure that the fluoride supplement in your water provides optimal dental protection, the

State Department of Health requires that we monitor fluoride levels on a daily basis. During the reporting year, monitoring showed fluoride levels in your water were in the optimal range 100% of the time. None of the monitoring results showed fluoride at levels that approach the 2.2 ppm MCL for fluoride.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: Microbial Contaminants; Inorganic Contaminants; Pesticides and Herbicides; Organic Chemical Contaminants; and Radioactive Contaminants.

11_

Drinking water, including bottled water, may reasonably be

expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. In order to ensure that tap water is safe to drink, the State and the U.S. EPA prescribe regulations that limit the amount of

certain contaminants in water provided by public water systems. The State Health Department's and the U.S. FDA's regulations establish limits for contaminants in bottled water that must provide the same protection for public health. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

We remain vigilant in delivering the best-quality drinking water

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	DATE SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)	10-09-19	2	2	0.0017	0.00085-0.0017	No	Erosion of natural deposits
Chloride (ppm)	10-16-19	250	NA	74	13–74	No	Naturally occurring
Haloacetic Acids [mono-, di-, and trichloroacetic acid, and mono- and dibromoacetic acid] $^1~(ppb)$	Quarterly 2019	60	NA	42.8	17–47	No	By-product of drinking water disinfection needed to kill harmful organisms
Manganese (ppb)	10-16-19	300	NA	13	ND-13	No	Naturally occurring; Indicative of landfill contamination
Nickel (ppb)	10-09-19	TT or AL of 100	100	0.85	ND - 0.85	No	Natural element of Earth's crust so small amounts are found in food, water, soil, and air
Nitrate (ppm)	09-18-19	10	10	0.27	ND-0.27	No	Runoff from fertilizer use
Sodium (ppm)	10-16-19	See footnote 2	NA	42	9.2–42	No	Naturally occurring
Sulfate (ppm)	10-16-19	250	NA	5.0	5.0–5.5	No	Naturally occurring
Total Coliform Bacteria* (positive samples)	8-15-19	TT 2 or more positive samples/ month	0	1 positive sample	NA	No	Naturally present in the environment
Total Trihalomethanes [TTHMs – chloroform, bromodichloromethane, dibromochloromethane, and bromoform] ³ (ppb) Total Trihalomethanes–44 Balmville Rd. (ppb)	Quarterly 2019	80	NA	60 96	16–100 25–96	No Yes	By-product of drinking water chlorination needed to kill harmful organisms; Formed when source water contains large amounts of organic matter
Total Trihalomethanes–Evan's Ct. Sample Station				100	26–100	Yes	
Turbidity ⁴ (NTU)	07/14/19	TT = ≤ 1.0 NTU	NA	0.14	NA	No	Soil runoff
${\bf Turbidity}^{\!$	Every month	$TT = 95\% \text{ of}$ samples ≤ 0.3 NTU	NA	100%	NA	No	Soil runoff
Turbidity [Distribution System] ⁴ (NTU)	01/02/19	5	NA	7.3	0.04-7.3	No	Soil runoff

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.								
SUBSTANCE (UNIT OF MEASURE)	DATE SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	RANGE LOW-HIGH	SITES ABOVE AL/TOTAL SITES	EXCEEDANCE	TYPICAL SOURCE
Copper (ppm)	June-Sept 2019) 1.3	1.3	0.15	0.011–0.150	0/31	No	Corrosion of household plumbing systems
Lead (ppb)	June-Sept. 201	9 15	0	1.1	1.0–1,300.0	1/31	Yes	Corrosion of household plumbing systems
OTHER SUBSTANCES								
SUBSTANCE (UNIT OF MEASUR	E)	DAT SAMP		AMOUNT DETECTE		TYPICAL	SOURCE	
Chlorate (ppb)		06-23	3-15	440	ND-440) Used in	agriculture and	l as a bleaching agent

Chromium (Total) (ppb)	12-17-14	0.38	ND-0.38	Naturally occurring
Chromium-6 (ppb)	09-10-15	0.29	ND-0.29	Industrial by-product
Strontium (ppb)	12-17-14	100	ND-100	Naturally occurring
Vanadium (ppb)	06-23-15	0.35	0.27-0.35	Natural sources

¹TTHM and HAA5 values as indicated represent the highest Locational Running Annual Average for the year and show the range of all individual msamples collected throughout the year. Due to a higher value in past subsequent quarterly averages, the current running annual average is outside the recent sample range. ²Water containing more than 20 ppm of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 ppm of sodium should not be used for drinking by people on moderately restricted sodium diets.

³TTHM and HAA5 values as indicated represent the highest Locational Running Annual Average for the year and show the range of all individual samples collected throughout the year. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their livers, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

⁴Turbidity is a measure of the cloudiness of the water. It is tested because it is a good indicator of the effectiveness of the filtration system. The highest measurement of the monthly average distribution results for the year occurred as indicated in the table.

* Coliform footnote: 3 repeat samples were collected for coliform as required, all samples were negative for bacteria; therefore, this sample was never confirmed.

Water Treatment Process

At the Chadwick Lake Filtration Plant, water is drawn from the reservoir and a chemical is added for coagulation. This process causes small particles to adhere to one another forming what is called a floc. As this floc grows larger, it becomes heavier and settles into a basin, from which sediment is removed. The water is then processed through sand filters, producing a crystal-clear effluent. Chemicals for pH adjustment and corrosion control are added at this point. Finished water can then pass through an additional filtration process for the removal of iron and manganese, as necessary.

The water from our Delaware Aqueduct facility is purchased from New York City DEP. At our new state-of-the-art filtration plant for the Delaware source, water is filtered through a membrane barrier and then chemically treated for pH and corrosion control.

Sodium hypochlorite is added to both drinking water sources as a disinfectant. The water is fluoridated at both facilities for consumer dental health protection.

Typically, both the Town's filter plants are online and supply water to the distribution system simultaneously. Most parts of the town will see a combination of both sources at their tap.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead and copper values detected at your water system.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as possible.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level):

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (**parts per billion**): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

Water Source Restriction

During October of 2018, the Chadwick Lake Filter Plant experienced a failure in its main control programming. This failure resulted in the filter plant being offline from November 2018 into January 2019. The failed equipment was replaced with upgraded components in order to prevent this issue in the future. During this period, the Town's water was supplied by the Delaware Aqueduct Tap facility only. Chadwick Lake Filter Plant is again in full operational order.

During 2019, the DEP performed routine operation of essential equipment at the Delaware Aqueduct Filter Plant's intake point. This operation requires the source water to be off for a 1 - 3 hour window. It does not inhibit the required daily water production.

Non-detected Contaminants

Following is a list of contaminants that we tested for but did not detect in our water supply.

Inorganics:

Antimony, Arsenic, Asbestos, Beryllium, Bromate, Cadmium, Chlorite, Cyanide, Iron, Mercury, Selenium, Silver, Thallium, Uranium, Zinc

Volatile Organics:

Alachlor; Aldicarb; Aldicarb sulfone; Aldicarb sulfoxide; Aldrin; Atrazine; Benzene; Benzo(a)pyrene; bis(2-Ethylhexyl) adipate; bis(2-Ethylhexyl)phthalate; Bromobenzene; Bromomethene; Butachlor; n-Butylbenzene; sec-Butylbenzene; Bromochloromethane; Carbon tert-Butylbenzene; Tetrachloride; Carbaryl; nCarbofuran; 3-Hydrocarbofuran; Chlordane; Chloroethane; Chloromethane; 1,2 Dibromo-3-chloropropane; 1,2- Dibromoethane; 2-Chlorotoluene; 4-Chlorotoluene; Dalapon; Dibromomethane; Dicamba; Dinoseb; 1,2-Dichlorobenzene; 1,3-Dichlorobenzene; 1,4-Dichlorobenzene; Dichlorodifluoromethane; 1,1-Dichloroethane; 1,2-Dichloroethane; 1,1-Dichloroethene; cis-1,2-Dichloroethene: trans-1,2-Dichloroethene; 1,2-Dichloropropane; 1,3-Dichloropropane; 2,2-Dichloropropane; 1,1-Dichloropropene; cis-1,3-Dichloropropene; trans-1,3-Dichloropropene; Dieldrin; Endrin; Ethylbenzene; gamma-BHC (Lindane); Heptachlor; Heptachlor epoxide; Hexachlorobenzene; Hexachlorocyclopentadiene; Hexachlorobutadiene; Isopropylbenzene; p-Isopropyltoluene; Methoxychlor; Methomyl; Metalochlor; Methylene Chloride; Metribuzin; Oxamyl; PCB, total; Pentachlorophenol; Picloram; Propachlor; n-Propylbenzene; Styrene; Simazine; 1,1,1,2-Tetrachloroethane; 1,1,2,2-Tetrachloroethane; 2,4,5-TP (Silvex); Tetrachloroethene; Toluene; Toxaphene; 1,2,4-Trichlorobenzene; 1,1,1-Trichloroethane; 1,1,2-Trichloroethane; Trichloroethane; 1,2,3-Trichlorpropane; Trichlorofluoromethane; 1,2,4-Trimethylbenzene; 1,3,5-Trimethylbenzene; o-Xylene; m-Xylene; p-Xylene; Xylene, Total; MTBE; Vinyl chloride.